KK-Theory and Spectral Flow in von Neumann Algebras
From MaRDI portal
Publication:3143530
DOI10.1017/is012003003jkt185zbMath1260.19001arXivmath/0701326OpenAlexW2199417231MaRDI QIDQ3143530
Adam Rennie, Jens Kaad, Ryszard Nest
Publication date: 30 November 2012
Published in: Journal of K-Theory (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/math/0701326
Noncommutative topology (46L85) Noncommutative differential geometry (46L87) (K)-theory and operator algebras (including cyclic theory) (46L80) Kasparov theory ((KK)-theory) (19K35) Index theory (19K56)
Related Items (12)
Chern numbers, localisation and the bulk-edge correspondence for continuous models of topological phases ⋮ Constructing KMS states from infinite-dimensional spectral triples ⋮ Callias-type operators associated to spectral triples ⋮ The Cayley transform in complex, real and graded K-theory ⋮ The spectral localizer for semifinite spectral triples ⋮ The \(K\)-theoretic bulk-edge correspondence for topological insulators ⋮ Spectral triples for noncommutative solenoidal spaces from self-coverings ⋮ Spectral flow invariants and twisted cyclic theory for the Haar state on \(SU_q(2)\) ⋮ Index theory for locally compact noncommutative geometries ⋮ Index pairings for \(\mathbb{R}^n\)-actions and Rieffel deformations ⋮ The Godbillon-Vey invariant and equivariant \(KK\)-theory ⋮ Hecke operators in \(KK\)-theory and the \(K\)-homology of Bianchi groups
Cites Work
- Unnamed Item
- The noncommutative geometry of graph \(C^*\)-algebras. I: The index theorem
- Smoothness and locality for nonunital spectral triples
- Spectral flow in Fredholm modules, eta invariants and the JLO cocycle
- The local index formula in semifinite von Neumann algebras. I: Spectral flow
- The local index formula in semifinite von Neumann algebras. II: the even case
- Fredholm theories in von Neumann algebras. I
- Fredholm theories in von Neumann algebras. II
- THE OPERATORK-FUNCTOR AND EXTENSIONS OFC*-ALGEBRAS
- Unbounded Fredholm Modules and Spectral Flow
- Self-Adjoint Fredholm Operators And Spectral Flow
- Unbounded Fredholm Operators and Spectral Flow
This page was built for publication: KK-Theory and Spectral Flow in von Neumann Algebras