-constants and equivariant Arakelov–Euler characteristics
DOI10.1016/S0012-9593(02)01091-1zbMath1039.11078arXivmath/0006095OpenAlexW1675999409MaRDI QIDQ3146964
Ted Chinburg, Martin J. Taylor, Georgios Pappas
Publication date: 18 September 2002
Published in: Annales Scientifiques de l’École Normale Supérieure (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/math/0006095
Zeta functions and related questions in algebraic geometry (e.g., Birch-Swinnerton-Dyer conjecture) (14G10) Integral representations related to algebraic numbers; Galois module structure of rings of integers (11R33) Arithmetic varieties and schemes; Arakelov theory; heights (14G40)
Related Items (2)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Characteristic classes for algebraic vector bundles with Hermitian metric. I
- Classgroups and Hermitian modules
- On Fröhlich's conjecture for rings of integers of tame extensions
- Local root numbers and Hermitian-Galois module structure of rings of integers
- Analytic torsion and the arithmetic Todd genus. (With an appendix by D. Zagier)
- \(\varepsilon\)-factor of a tamely ramified sheaf on a variety
- Galois structure of de Rham cohomology of tame covers of schemes
- \(\varepsilon\)-constants and the Galois structure of de Rham cohomology
- On the \(\varepsilon\)-constants of arithmetic schemes
- \(\epsilon\)-constants and Arakelov Euler characteristics.
- Equivariant immersions and Quillen metrics
- Tame actions of group schemes: Integrals and slices
- An arithmetic Riemann-Roch theorem
- Residues and duality. Lecture notes of a seminar on the work of A. Grothendieck, given at Havard 1963/64. Appendix: Cohomology with supports and the construction of the \(f^!\) functor by P. Deligne
- Analytic torsion for complex manifolds
- Les Constantes des Equations Fonctionnelles des Fonctions L
- Logarithmic structures of Fontaine-Illusie. II
- The projectivity of the moduli space of stable curves. I: Preliminaries on "det" and "Div".
- On the E-constants of a variety over a finite field
- Duality and Hermitian Galois Module Structure
- ε-constants and the Galois structure of deRham cohomology II
This page was built for publication: -constants and equivariant Arakelov–Euler characteristics