Factorial \(P\)- and \(Q\)-Schur functions represent equivariant quantum Schubert classes
From MaRDI portal
Publication:315838
zbMath1375.14168arXiv1402.0892MaRDI QIDQ315838
Hiroshi Naruse, Leonardo C. Mihalcea, Takeshi Ikeda
Publication date: 26 September 2016
Published in: Osaka Journal of Mathematics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1402.0892
Grassmannians, Schubert varieties, flag manifolds (14M15) Gromov-Witten invariants, quantum cohomology, Frobenius manifolds (53D45)
Related Items
Multiparameter universal characters of B-type and integrable hierarchy ⋮ Equivariant quantum cohomology of the odd symplectic Grassmannian ⋮ Chevalley formula for anti-dominant minuscule fundamental weights in the equivariant quantum \(K\)-group of partial flag manifolds ⋮ Double theta polynomials and equivariant Giambelli formulas ⋮ Linear transformations of vertex operators of Hall-Littlewood polynomials ⋮ An identity involving symmetric polynomials and the geometry of Lagrangian Grassmannians ⋮ On equivariant quantum Schubert calculus for \(G/P\) ⋮ Double eta polynomials and equivariant Giambelli formulas ⋮ Schubert polynomials, theta and eta polynomials, and Weyl group invariants ⋮ Multiparameter Schur \(Q\)-functions are solutions of the BKP hierarchy