Robust hierarchical a posteriori error estimators for stabilized convection-diffusion problems
DOI10.1002/num.21696zbMath1254.65122OpenAlexW2020237789MaRDI QIDQ3166294
Mohamed El Fatini, Abdellatif Agouzal, Boujemâa Achchab, Ali Souissi
Publication date: 11 October 2012
Published in: Numerical Methods for Partial Differential Equations (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1002/num.21696
stabilizationfinite elementconvection-diffusion problemstabilized methodssaturation assumptionrobust a posteriori estimator
Boundary value problems for second-order elliptic equations (35J25) Error bounds for boundary value problems involving PDEs (65N15) Stability and convergence of numerical methods for boundary value problems involving PDEs (65N12) Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs (65N30)
Related Items
Cites Work
- Unnamed Item
- Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems
- Adaptive mesh for algebraic orthogonal subscale stabilization of convective dispersive transport
- A posteriori error estimates for subgrid viscosity stabilized approximations of convection-diffusion equations
- Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations
- Hierarchical a posteriori error estimator. Application to mixed finite elements
- A posteriori error estimators for convection-diffusion equations
- On stabilized finite element methods for linear systems of convection-diffusion-reaction equations
- Small data oscillation implies the saturation assumption
- Hierarchical robust a posteriori error estimator for a singularly perturbed problem
- A Posteriori Error Estimates Based on Hierarchical Bases
- A priori and a posteriori analysis of non-conforming finite elements with face penalty for advection–diffusion equations
- A Posteriori Error Estimates for Lowest-Order Mixed Finite Element Discretizations of Convection-Diffusion-Reaction Equations
- Some A Posteriori Error Estimators for Elliptic Partial Differential Equations
- Formulations Mixtes Augmentées et Applications
- An adaptive multilevel approach to parabolic equations III. 2D error estimation and multilevel preconditioning
- Error Estimates for Adaptive Finite Element Computations
- Reliable and Robust A Posteriori Error Estimation for Singularly Perturbed Reaction-Diffusion Problems
- CHOOSING BUBBLES FOR ADVECTION-DIFFUSION PROBLEMS
- Data Oscillation and Convergence of Adaptive FEM
- Some remarks about the hierarchicala posteriori error estimate
- Stabilization of Galerkin approximations of transport equations by subgrid modeling
- Robust A Posteriori Error Estimates for Stationary Convection-Diffusion Equations
- A robust a posteriori estimator for the residual-free bubbles method applied to advection-diffusion problems