GEOMETRIC TAMELY RAMIFIED LOCAL THETA CORRESPONDENCE IN THE FRAMEWORK OF THE GEOMETRIC LANGLANDS PROGRAM
DOI10.1017/S1474748015000043zbMath1408.22022OpenAlexW2963646250MaRDI QIDQ3178582
Publication date: 14 July 2016
Published in: Journal of the Institute of Mathematics of Jussieu (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1017/s1474748015000043
Hecke algebrasK-theorylocal theta correspondenceperverse sheavesLanglands functorialitygeometric Langlands program
Hecke algebras and their representations (20C08) Group actions on varieties or schemes (quotients) (14L30) Stratifications; constructible sheaves; intersection cohomology (complex-analytic aspects) (32S60) Equivariant (K)-theory (19L47) Algebraic (K)-theory and (L)-theory (category-theoretic aspects) (18F25) Geometric Langlands program: representation-theoretic aspects (22E57) Geometric Langlands program (algebro-geometric aspects) (14D24)
Related Items (1)
Cites Work
- Perverse sheaves on affine flags and Langlands dual group
- Description de la correspondance de Howe en termes de classification de Kazhdan-Lusztig. (Description of the Howe correspondence in terms of the Kazhdan-Lusztig classification)
- On the local theta-correspondence
- Proof of the Deligne-Langlands conjecture for Hecke algebras
- Howe correspondences on a \(p\)-adic field
- Classes unipotentes et sous-groupes de Borel
- Admissible representations of a semi-simple group over a local field with vectors fixed under an Iwahori subgroup
- Conformal blocks and generalized theta functions
- Cells in affine Weyl groups and tensor categories
- Geometric local Arthur--Langlands functoriality and Howe correspondence at the Iwahori level
- Vertex algebras and the formal loop space
- Geometric Langlands duality and representations of algebraic groups over commutative rings
- On some Bruhat decomposition and the structure of the Hecke rings of \(p\)-adic Chevalley groups
- Langlands' Functoriality and the Weil Representation
- Geometric Weil representation: local field case
- Correspondance de Howe explicite : paires duales de type II
- Bases in equivariant 𝐾-theory
- Geometric theta-lifting for the dual pair $\mathbb{SO}_{2m}, \mathbb{S}\mathrm{p}_{2n}$
- Local geometric Langlands correspondence and affine Kac-Moody algebras
- Construction of central elements in the affine Hecke algebra via nearby cycles
This page was built for publication: GEOMETRIC TAMELY RAMIFIED LOCAL THETA CORRESPONDENCE IN THE FRAMEWORK OF THE GEOMETRIC LANGLANDS PROGRAM