Mathematical Research Data Initiative
Main page
Recent changes
Random page
Help about MediaWiki
Create a new Item
Create a new Property
Create a new EntitySchema
Merge two items
In other projects
Discussion
View source
View history
Purge
English
Log in

Boundedness of paracommutators onL p -spaces

From MaRDI portal
Publication:3196755
Jump to:navigation, search

DOI10.1007/BF02107592zbMath0712.42034OpenAlexW2071923178MaRDI QIDQ3196755

Chun Li

Publication date: 1990

Published in: Acta Mathematica Sinica (Search for Journal in Brave)

Full work available at URL: https://doi.org/10.1007/bf02107592


zbMATH Keywords

\(L^ p\)-spacesSchatten-von Neumann propertiesParacommutator


Mathematics Subject Classification ID

Singular and oscillatory integrals (Calderón-Zygmund, etc.) (42B20) Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type (42A38)


Related Items (1)

Compensated compactness, paracommutaors, and Hardy spaces



Cites Work

  • Unnamed Item
  • On the action of Hankel and Toeplitz operators on some function spaces
  • Factorization theorems for Hardy spaces in several variables
  • On the compactness of operators of Hankel type
  • Mean oscillation and commutators of singular integral operators
  • Inequalities for strongly singular convolution operators
  • Paracommutators-Boundedness and Schatten-Von Neumann Properties
  • On Commutators of Singular Integrals and Bilinear Singular Integrals
  • Pointwise estimates for a class of singular integrals and higher commutators
  • COMMUTATORS OF SINGULAR INTEGRAL OPERATORS
  • On multiplier transformations


This page was built for publication: Boundedness of paracommutators onL p -spaces

Retrieved from "https://portal.mardi4nfdi.de/w/index.php?title=Publication:3196755&oldid=16319111"
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information
MaRDI portal item
This page was last edited on 3 February 2024, at 22:59.
Privacy policy
About MaRDI portal
Disclaimers
Imprint
Powered by MediaWiki