Extension of Beckert's Continuation Method to Variational Inequalities
From MaRDI portal
Publication:3209719
DOI10.1002/mana.3211480111zbMath0722.49014OpenAlexW2074964328MaRDI QIDQ3209719
Hans D. Mittelmann, Erich Miersemann
Publication date: 1990
Published in: Mathematische Nachrichten (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1002/mana.3211480111
Related Items (4)
Continuation for parametrized nonlinear variational inequalities ⋮ Smooth dependence on parameters of solutions and contact regions for an obstacle problem. ⋮ Smooth continuation of solutions and eigenvalues for variational inequalities based on the implicit function theorem. ⋮ Stability and continuation of solutions to obstacle problems
Cites Work
- Positive solutions of variational inequalities: A degree-theoretic approach
- Continuation for parametrized nonlinear variational inequalities
- Positive solutions of some eigenvalue problems in the theory of variational inequalities
- An Efficient Algorithm for Bifurcation Problems of Variational Inequalities
- Stabilitätsprobleme für Eigenwertaufgaben bei Beschränkungen für die Variationen mit einer Anwendung auf die Platte
- Nonlinear eigenvalue problems in elliptic variational inequalities:a local study
- A free boundary problem and stability for the circular plate
- On Continuation for Variational Inequalities
- On the continuation for variational inequalities depending on an eigenvalue parameter
- Eigenwertaufgaben für Variationsungleichungen
- Eigenvalue problems for variational inequalities
- Path following near bifurcation
- Zur Lösungsverzweigung bei Variationsungleichungen mit einer Anwendung auf den Knickstab mit begrenzter Durchbiegung
- A free boundary problem and stability for the nonlinear beam
- A Pseudo-Arclength Continuation Method for Nonlinear Eigenvalue Problems
- Variations‐ und Eigenwertprobleme zu nichtlinearen Differentialgleichungssystemen höherer Ordnung
This page was built for publication: Extension of Beckert's Continuation Method to Variational Inequalities