First boundary-value problem in the half-strip for a parabolic-type equation with Bessel operator and Riemann-Liouville derivative
From MaRDI portal
Publication:325560
DOI10.1134/S0001434616050308zbMath1352.35221MaRDI QIDQ325560
Publication date: 18 October 2016
Published in: Mathematical Notes (Search for Journal in Brave)
Bessel operatorRiemann-Liouville derivativeFox \(H\)-functiondiffusion of fractional orderfirst boundary-value problemFourier equationparabolic-type equation
Initial-boundary value problems for second-order parabolic equations (35K20) Fractional partial differential equations (35R11)
Related Items (6)
To the Properties of One Fox Function ⋮ Inverse coefficient problem for a fractional-diffusion equation with a Bessel operator ⋮ Unnamed Item ⋮ Dirichlet boundary value problem in half-strip for fractional differential equation with Bessel operator and Riemann - Liouville partial derivative ⋮ The second boundary-value problem in a half-strip for a parabolic-type equation with Bessel operator and Riemann-Liouville partial derivative ⋮ Первая краевая задача в прямоугольной области для дифференциального уравнения с оператором Бесселя и частной производной Римана-Лиувилля
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A Cauchy-type problem for the diffusion-wave equation with Riemann-Liouville partial derivative
- On the parabolic equation \(sgn (x) | x | ^p u_y - u_{xx}=0\) and a related one
- On predicting repair times in a minimal repair process
- Fractional diffusion equation on fractals: one-dimensional case and asymptotic behaviour
- Degenerate elliptic-parabolic equation
- The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics
- The random walk's guide to anomalous diffusion: A fractional dynamics approach
This page was built for publication: First boundary-value problem in the half-strip for a parabolic-type equation with Bessel operator and Riemann-Liouville derivative