On the solution of certain singular integral equations of quantum field theory

From MaRDI portal
Publication:3255636

DOI10.1007/BF02747746zbMath0083.09902OpenAlexW2097077370MaRDI QIDQ3255636

Roland Omnès

Publication date: 1958

Published in: Il Nuovo Cimento (Search for Journal in Brave)

Full work available at URL: https://doi.org/10.1007/bf02747746




Related Items

Existence of Solutions of N/D EquationsQuarkonium bound-state problem in momentum space revisitedAsymptotic behaviour of a function expressed through a dispersion integralA renormalized, ghost-free lee modelComplex Singularities in Production AmplitudesLee Model with Two<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>V</mml:mi></mml:math>ParticlesStudy of pion-hyperon resonances by dispersion relations in the unphysical sheetSemi-spectral Chebyshev method in quantum mechanicsSolution of the Källén-Pauli EquationFinal-state interactions among three particlesRescattering effects in nucleon-to-meson form factors and application to tau-lepton-induced proton decay\(C\) and \(CP\) violation in effective field theoriesDynamical Approach to the Selection Rule<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mo>|</mml:mo><mml:mi>Δ</mml:mi><mml:mi>I</mml:mi><mml:mo>|</mml:mo><mml:mo>=</mml:mo><mml:mfrac><mml:mrow><mml:mn>1</mml:mn></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mfrac></mml:math>The O(N) monolith reloaded: sum rules and form factor bootstrapOn the connection between theS-matrix and a class of non-local interactions — IA Soluble Problem in Dispersion TheoryOn the validity of the exponential law for the decay of an unstable particleUnitarity Condition Below Physical Thresholds in the Normal and Anomalous CasesDispersion Relations for Pion-Hyperon Production and a Possible Pion-Hyperon ResonanceRenormalization Constants in Quantum ElectrodynamicsSome rigorous analytic properties of transition amplitudesDispersion relations for scattering wave functions in potential theoryRelativistic Model Field Theory with Finite Self-MassesBootstrapping massive quantum field theories<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>V</mml:mi><mml:mo>−</mml:mo><mml:mi>θ</mml:mi></mml:math>Collisions in the Lee ModelThe isoscalar amplitudes for meson photoproductionAnomalous thresholds in dispersion theory - ILeptonic decay modes of K-mesons and hyperonsPion photon scatteringAnalytic Properties and Rescattering Correction to the Born Approximation for Transition Matrix ElementsThe \(I= 1\) pion-pion scattering amplitude and timelike pion form factor from \(N_{f}=2+1\) lattice QCDTransition Matrix for Nucleon-Nucleon Scattering. II\(K_{\pi}\) vector form factor constrained by \(\tau \to K{\pi}\nu_{\tau}\) and \(K_{l_3}\) decaysPropagator Ghosts and Regge PolesSolution of a Singular Integral Equation from Scattering TheoryCalculation of Deuteron Stripping Amplitudes Using<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>S</mml:mi></mml:math>-Matrix Reduction TechniquesOverlapping Final-State InteractionsProduction and Scattering in Simple ModelsEffect of Overlapping Resonances in Final StatesAccurate numerical solutions of integral equations with kernels containing polesDispersion theory of nucleon Compton scattering and polarizabilitiesFredholm Character of the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mfrac><mml:mrow><mml:mi>N</mml:mi></mml:mrow><mml:mrow><mml:mi>D</mml:mi></mml:mrow></mml:mfrac></mml:math>Equations<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>V</mml:mi><mml:mo>−</mml:mo><mml:mi>A</mml:mi></mml:math>Theory and the Decay of the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>Λ</mml:mi></mml:math>HyperonTheory of low-energy scattering in field theoryOn the iteration of a singular integral equationStochastic description for open quantum systemsPion-Pion Interactions in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>τ</mml:mi></mml:math>and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi>τ</mml:mi></mml:mrow><mml:mrow><mml:mo>′</mml:mo></mml:mrow></mml:msup></mml:mrow></mml:math>Decays



Cites Work