Mathematical Research Data Initiative
Main page
Recent changes
Random page
Help about MediaWiki
Create a new Item
Create a new Property
Create a new EntitySchema
Merge two items
In other projects
Discussion
View source
View history
Purge
English
Log in

A class of cyclic \((v; k_{1}, k_{2}, k_{3}; \lambda)\) difference families with \(v \equiv 3\, (\text{mod}\, 4)\) a prime

From MaRDI portal
Publication:325819
Jump to:navigation, search

DOI10.1515/spma-2016-0029zbMath1351.15015arXiv1511.08734OpenAlexW2529571702MaRDI QIDQ325819

Dragomir Ž. Djoković, Ilias S. Kotsireas

Publication date: 11 October 2016

Published in: Special Matrices (Search for Journal in Brave)

Full work available at URL: https://arxiv.org/abs/1511.08734


zbMATH Keywords

difference familiesPaley-Todd difference setsskew-Hadamard matrices


Mathematics Subject Classification ID

Boolean and Hadamard matrices (15B34)




Cites Work

  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • On skew-Hadamard matrices
  • New skew-Hadamard matrices of order \(4\cdot 59\) and new \(D\)-optimal designs of order \(2\cdot 59\)
  • Cyclic difference sets
  • New Results on D-Optimal Matrices
  • D-Optimal Matrices of Orders 118, 138, 150, 154 and 174
  • Supplementary difference sets with symmetry for Hadamard matrices
  • Skew-Hadamard matrices of orders 436, 580, and 988 exist
  • Skew-Hadamard matrices of orders 188 and 388 exist
  • Combinatorial Designs
  • Some New Orders of Hadamard and Skew‐Hadamard Matrices




This page was built for publication: A class of cyclic \((v; k_{1}, k_{2}, k_{3}; \lambda)\) difference families with \(v \equiv 3\, (\text{mod}\, 4)\) a prime

Retrieved from "https://portal.mardi4nfdi.de/w/index.php?title=Publication:325819&oldid=12201507"
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information
MaRDI portal item
This page was last edited on 30 January 2024, at 02:29.
Privacy policy
About MaRDI portal
Disclaimers
Imprint
Powered by MediaWiki