A class of linear codes of length 2 over finite chain rings
DOI10.1142/S0219498820501030zbMath1454.94121OpenAlexW2936877058WikidataQ114614662 ScholiaQ114614662MaRDI QIDQ3298347
Yuan Cao, Fang-Wei Fu, Jian Gao, Songsak Sriboonchitta, Hai Quang Dinh, Yong-Lin Cao
Publication date: 14 July 2020
Published in: Journal of Algebra and Its Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1142/s0219498820501030
Algebraic coding theory; cryptography (number-theoretic aspects) (11T71) Linear codes (general theory) (94B05) Matrices over special rings (quaternions, finite fields, etc.) (15B33) Other types of codes (94B60) Finite commutative rings (13M99)
Related Items (13)
Cites Work
- Repeated-root constacyclic codes of prime power length over \(\frac{\mathbb{F}_{p^m} [u}{\langle u^a \rangle}\) and their duals]
- Negacyclic codes of length \(2p^s\) over \(\mathbb{F}_{p^m} + u \mathbb{F}_{p^m}\)
- Repeated root cyclic \(\mathbb{F}_q\)-linear codes over \(\mathbb{F}_{q^l}\)
- On constacyclic codes of length \(4p^s\) over \(\mathbb{F}_{p^m} +u\mathbb{F}_{p^m}\)
- Constacyclic codes of length \(p^s\) over \(\mathbb F_{p^m} + u\mathbb F_{p^m}\)
- Complete classification of \((\delta +\alpha u^2)\)-constacyclic codes over \(\mathbb {F}_{3^m}[u/\langle u^4\rangle \) of length \(3n\)]
- On \((1 - u)\)-cyclic codes over \(\mathbb F_{p^k}+u\mathbb F_{p^k}\)
- On the structure of linear and cyclic codes over a finite chain ring
- A class of repeated-root constacyclic codes over \(\mathbb{F}_{p^m} [u / \langle u^e \rangle\) of type 2]
- All \(\alpha+u\beta\)-constacyclic codes of length \(np^s\) over \(\mathbb{F}_{p^m}+u\mathbb{F}_{p^m}\)
- Constacyclic codes of length \(np^s\) over \(\mathbb{F}_{p^m}+u\mathbb{F}_{p^m}\)
- Constacyclic codes over \(\mathbb F_2 + u\mathbb F_2\)
- Complete classification of \((\delta + \alpha u^2)\)-constacyclic codes of length \(p^k\) over \(\mathbb{F}_{p^m} + u \mathbb{F}_{p^m} + u^2 \mathbb{F}_{p^m}\)
- On the decomposition of self-dual codes over \(\mathbb F_2 + u\mathbb F_2\) with an automorphism of odd prime order
- (1 + u) constacyclic and cyclic codes over \(F_{2} + uF_{2}\)
- Complete classification of \((\delta + \alpha u^2)\)-constacyclic codes over \(\mathbb{F}_{2^m} [u/\langle u^4 \rangle\) of oddly even length]
- On constacyclic codes over finite chain rings
- \((1+\lambda u)\)-constacyclic codes over \(\mathbb F_{p}[u/\langle u^m\rangle\)]
- Cyclic and Negacyclic Codes Over Finite Chain Rings
- Cyclic and negacyclic codes of length 4ps over 𝔽pm + u𝔽pm
- Type II codes over F/sub 2/+uF/sub 2/
- Constacyclic Codes of Length $2^s$ Over Galois Extension Rings of ${\BBF}_{2}+u{\BBF}_2$
This page was built for publication: A class of linear codes of length 2 over finite chain rings