Bethe ansatz for the Temperley–Lieb spin chain with integrable open boundaries
From MaRDI portal
Publication:3301523
DOI10.1088/1742-5468/2013/02/P02035zbMath1456.82317arXiv1210.7235OpenAlexW3101534378MaRDI QIDQ3301523
G. A. P. Ribeiro, A. Lima-Santos
Publication date: 11 August 2020
Published in: Journal of Statistical Mechanics: Theory and Experiment (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1210.7235
Exactly solvable models; Bethe ansatz (82B23) Groups and algebras in quantum theory and relations with integrable systems (81R12)
Related Items
Universal Bethe ansatz solution for the Temperley-Lieb spin chain, Topological basis associated with B-M-W algebra: two-spin-1/2 realization, Temperley–LiebK-matrices, On the \(\mathcal{{U}}_{q}[osp(1|2)\) Temperley-Lieb model]
Cites Work
- Unnamed Item
- Unnamed Item
- Reflection \(K\)-matrices related to Temperley-Lieb \(R\)-matrices
- Factorizing particles on a half-line and root systems
- Quantum spin chains of Temperley–Lieb type: periodic boundary conditions, spectral multiplicities and finite temperature
- On the \mathcal {U}_{q}[sl(2) Temperley–Lieb reflection matrices]
- Integrable open spin chains with nonsymmetric R-matrices
- q-deformations of the O(3) symmetric spin-1 Heisenberg chain
- Temperley-Lieb lattice models arising from quantum groups
- Exact solutions forA-DTemperley - Lieb models
- On spin systems related to the Temperley–Lieb algebra
- BETHE ANSATZ SOLUTIONS FOR TEMPERLEY–LIEB QUANTUM SPIN CHAINS
- ALL EXACTLY SOLVABLE U(1)-INVARIANT QUANTUM SPIN 1 CHAINS FROM HECKE ALGEBRA
- Boundary conditions for integrable quantum systems
- Exact solution of the deformed biquadratic spin-1 chain
- Hecke algebra solutions to the reflection equation
- A Bethe ansatz solution for the closed Temperley - Lieb quantum spin chains