Alexandre Mikhailovich Vinogradov
DOI10.1070/RM9931zbMath1445.01025OpenAlexW3020513226MaRDI QIDQ3305702
A. M. Astashov, A. S. Mishchenko, Michal Marvan, Dmitry Fuchs, S. P. Novikov, Theodore Th. Voronov, V. P. Maslov, I. S. Krasil'shchik, Yvette Kosmann-Schwarzbach, Luca Vitagliano, Vladimir Rubtsov, Alexander Verbovetsky, Valentin V. Lychagin, Alexander P. Veselov, Victor M. Buchstaber, Michael M. Vinogradov, Alexey V. Samokhin, Victor G. Kac, Irina V. Astashova, Raffaele Vitolo, I. M. Krichever, Vladimir N. Chetverikov, Anatoly M. Vershik, A. B. Sossinskij, Alexander P. Krishchenko, Alexei V. Bocharov, Alexander Ya. Helemskii, James D. Stasheff, Victor A. Vassiliev, Albert S. Schwarz, N. G. Khor'kova, Sergei K. Lando
Publication date: 10 August 2020
Published in: Russian Mathematical Surveys (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1070/rm9931
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Nonlocal trends in the geometry of differential equations: Symmetries, conservation laws, and Bäcklund transformations
- Symmetries and conservation laws of Kadomtsev-Pogutse equations (Their computation and first applications)
- On variation bicomplexes associated to differential equations
- From Poisson algebras to Gerstenhaber algebras
- Local symmetries and conservation laws
- The \({\mathcal C}\)-spectral sequence, Lagrangian formalism, and conservation laws. I: The linear theory
- The \({\mathcal C}\)-spectral sequence, Lagrangian formalism, and conservation laws. II: The nonlinear theory
- Geometry of nonlinear differential equations
- Extensions of the Poisson bracket to differential forms and multi-vector fields
- Geometry I: basic ideas and concepts of differential geometry. Transl. from the Russian by E. Primrose
- The local structure of \(n\)-Poisson and \(n\)-Jacobi manifolds
- Vacuum Einstein metrics with bidimensional Killing leaves. II: Global aspects.
- Vacuum Einstein metrics with bidimensional Killing leaves. I: Local aspects.
- Graded multiple analogs of Lie algebras
- Logic of differential calculus and the Zoo of geometric structures
- Particle-like structure of coaxial Lie algebras
- WHAT IS THE HAMILTONIAN FORMALISM?
- THE STRUCTURES OF HAMILTONIAN MECHANICS
- Smooth Manifolds and Observables
- Characteristic Cohomology of Differential Systems (I): General Theory
- Particle-like structure of Lie algebras
- Gravitational fields with a non-Abelian, bidimensional Lie algebra of symmetries