On an analogue of a Brauer theorem for fusion categories
From MaRDI portal
Publication:331064
DOI10.1007/s00605-016-0881-5zbMath1392.18003arXiv1503.04601OpenAlexW2963310177MaRDI QIDQ331064
Publication date: 26 October 2016
Published in: Monatshefte für Mathematik (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1503.04601
Grothendieck ringsHopf algebrasfusion categoriesBrauer's theoremfaithful charactersFrobenius-Perron dimensions
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On normal Hopf subalgebras of semisimple Hopf algebras.
- Burnside-Brauer theorem for table algebras.
- Braided tensor categories
- Module categories, weak Hopf algebras and modular invariants
- From subfactors to categories and topology. II: The quantum double of tensor categories and subfactors
- Faithful simple objects, orders and gradings of fusion categories
- Nilpotent fusion categories
- On some representations of the Drinfel'd double.
- On fusion categories.
- On normal tensor functors and coset decompositions for fusion categories
- Burnside's theorem for representations of Hopf algebras
- KERNELS OF REPRESENTATIONS AND COIDEAL SUBALGEBRAS OF HOPF ALGEBRAS
- The Representation Ring of the Twisted Quantum Double of a Finite Group
- Normal Hopf subalgebras of semisimple Hopf algebras
- Quotient spaces for hopf algebras
- Burnside's Theorem for Hopf Algebras
- A commuting pair in Hopf algebras
- The grothendieck algebra of a hopf algebra, i
- On the Structure of Modular Categories
- On higher Frobenius-Schur indicators
- Quantum invariants of knots and 3-manifolds
This page was built for publication: On an analogue of a Brauer theorem for fusion categories