An equivariant main conjecture in Iwasawa theory without the assumption \(\mu = 0\)
From MaRDI portal
Publication:331142
DOI10.1016/J.JNT.2016.07.017zbMath1414.11144OpenAlexW2507301543WikidataQ122952423 ScholiaQ122952423MaRDI QIDQ331142
Publication date: 26 October 2016
Published in: Journal of Number Theory (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jnt.2016.07.017
Zeta functions and (L)-functions of number fields (11R42) Iwasawa theory (11R23) Galois cohomology (11R34)
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- An equivariant main conjecture in Iwasawa theory and the Coates-Sinnott conjecture
- Equivariant Main Conjecture, Fitting ideals and annihilators in Iwasawa theory
- Values of abelian \(L\)-functions at negative integers over totally real fields
- The Iwasawa invariant \(\mu_p\) vanishes for abelian number fields
- Riemann-Hurwitz formula and p-adic Galois representations for number fields
- Values at negative integers of zeta functions and \(p\)-adic zeta functions
- On \(\mathbb Z_{\ell}\)-extensions of algebraic number fields
- Toward equivariant Iwasawa theory
- The Iwasawa conjecture for totally real fields
- Equivariant Iwasawa theory and non-abelian Stark-type conjectures
- On the “main conjecture” of equivariant Iwasawa theory
- An Equivariant Main Conjecture in Iwasawa theory and applications
- On the Coates-Sinnott Conjecture
- The lifted root number conjecture and Iwasawa theory
This page was built for publication: An equivariant main conjecture in Iwasawa theory without the assumption \(\mu = 0\)