The blowup along the diagonal of the spectral function of the Laplacian
From MaRDI portal
Publication:331864
DOI10.1007/s40574-016-0055-3zbMath1354.58028arXiv1103.1276OpenAlexW1606619885MaRDI QIDQ331864
Publication date: 27 October 2016
Published in: Bollettino dell'Unione Matematica Italiana (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1103.1276
harmonic polynomialRiemannian manifoldeigenfunctionsLaplacianspectral functionsreal analytic manifold
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Scaling limit for the kernel of the spectral projector and remainder estimates in the pointwise Weyl law
- Nodal sets of eigenfunctions on Riemannian manifolds
- Asymptotic of the spectral function of a positive elliptic operator without the nontrap condition
- Riemannian manifolds with maximal eigenfunction growth
- Derivatives of the spectral function and Sobolev norms of eigenfunctions on a closed Riemannian manifold
- The spectral function of an elliptic operator
- Local and global analysis of eigenfunctions
- Meillieurs estimations asymptotiques des restes de la fonctionn spectrale et des valeurs propres relatifs au laplacien.
- Average Growth of the Spectral Function on a Riemannian Manifold
- Remark on Eigenfunction Expansions for Elliptic Operators with Constant Coefficients.
This page was built for publication: The blowup along the diagonal of the spectral function of the Laplacian