A preliminary study of MV-algebras with two quantifiers which commute
From MaRDI portal
Publication:332078
DOI10.1007/s11225-016-9663-2zbMath1357.06004OpenAlexW2291192136MaRDI QIDQ332078
Publication date: 27 October 2016
Published in: Studia Logica (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s11225-016-9663-2
Lattices and duality (06D50) Other algebras related to logic (03G25) Subalgebras, congruence relations (08A30) MV-algebras (06D35) Categories of algebras (08C05)
Related Items
Monadic \(k\times j\)-rough Heyting algebras ⋮ Monteiro's algebraic notion of maximal consistent theory for Tarskian logics ⋮ A topological duality for monadic MV-algebras
Cites Work
- The Priestley duality for Wajsberg algebras
- Representations of monadic MV-algebras
- Cylindric algebras. Part II
- Interpretation of AF \(C^*\)-algebras in Łukasiewicz sentential calculus
- Quantifiers on distributive lattices
- Lukasiewicz-Moisil algebras
- Connections between \(\text{MV}_n\) algebras and \(n\)-valued Lukasiewicz-Moisil algebras. II
- Varieties of two-dimensional cylindric algebras. I: Diagonal-free case.
- Algebraic foundations of many-valued reasoning
- On monadic MV-algebras
- Algebraic Analysis of Many Valued Logics
- Coproducts of De Morgan algebras
- Finite Diagonal-free Two-dimensional Cylindric Algebras
- Monadic Distributive Lattices
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item