From Langlands' automorphic transfer to nonlinear Poisson formulas
DOI10.5802/aif.3029zbMath1417.11153OpenAlexW2345621001MaRDI QIDQ332207
Publication date: 27 October 2016
Published in: Annales de l'Institut Fourier (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.5802/aif.3029
Fourier transformfunction fieldsreductive groupsadelesLanglands' automorphic transferPoisson formula
Arithmetic theory of algebraic function fields (11R58) (zeta (s)) and (L(s, chi)) (11M06) Linear algebraic groups over global fields and their integers (20G30) Adèle rings and groups (11R56) Representation-theoretic methods; automorphic representations over local and global fields (11F70) Fourier and Fourier-Stieltjes transforms on nonabelian groups and on semigroups, etc. (43A30) Linear algebraic groups over local fields and their integers (20G25)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A lemma on highly ramified \(\epsilon\)-factors
- Spectral decomposition and Eisenstein series
- Drinfeld shtukas and Langlands correspondence.
- Kernels of Langlands automorphic transfer and nonlinear Poisson formulas
- Zeta functions of simple algebras
- Structures de Hodge–Pink pour les φ/𝔖-modules de Breuil et Kisin
- Chtoucas pour les groupes réductifs et paramétrisation de Langlands globale