Infinitely subadditive capacities as upper envelopes of measures
DOI10.1007/BF00532649zbMath0553.28002OpenAlexW2067217238MaRDI QIDQ3346517
Publication date: 1985
Published in: Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/bf00532649
infinitely subadditive capacitiesupper envelopes of probability measuresupper envelopes of weakly compact sets of measures
Contents, measures, outer measures, capacities (28A12) Spaces of measures, convergence of measures (28A33) Convex sets in topological linear spaces; Choquet theory (46A55) Integration theory via linear functionals (Radon measures, Daniell integrals, etc.), representing set functions and measures (28C05)
Related Items (10)
Cites Work
- Representation of capacities
- Capacitylike set functions and upper envelopes of measures
- Kapazitäten statt Wahrscheinlichkeiten? Gedanken zur Grundlegung der Statistik
- Topology and measure
- Séminaire de probabilités. V. Université de Strasbourg
- Seminar on potential theory. II
- Gemeinsame Urbilder endlich additiver Inhalte. (Common inverse images of finitely additive contests)
- Kapazitäten und obere Einhüllende von Maßen. (Capacities and upper envelopes of measures.)
- Minimax tests and the Neyman-Pearson lemma for capacities
- Ensembles analytiques, capacites, mesures de Hausdorff
- Theory of capacities
- A set function without $\sigma$-additive extension having finitely additive extensions arbitrarily close to $\sigma$-additivity
- Me\fehler und Information
- The Problem of Subsets of Finite Positive Measure
- Compactness in spaces of measures
- Compactness and sequential compactness in spaces of measures
- Some Minimax Theorems.
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Infinitely subadditive capacities as upper envelopes of measures