On the exactness of products in the localization of (Ab.\(4^{\ast}\)) Grothendieck categories
DOI10.1016/j.jalgebra.2016.08.019zbMath1372.18013OpenAlexW2515170726MaRDI QIDQ335589
Publication date: 2 November 2016
Published in: Journal of Algebra (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jalgebra.2016.08.019
derived categoryquotient categorylocal cohomologyGrothendieck categorytorsion theorylocalizing subcategoryaxiom AB4*
Torsion theories, radicals (18E40) Local cohomology and commutative rings (13D45) Relative homological algebra, projective classes (category-theoretic aspects) (18G25) Localization of categories, calculus of fractions (18E35) Derived categories and commutative rings (13D09)
Related Items (3)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Injective modules over Noetherian rings
- Stable torsion radicals over FBN rings
- The Gabriel dimension of a module
- Cotorsion pairs, model category structures, and representation theory
- Non-left-complete derived categories
- Kaplansky classes and derived categories
- Sur quelques points d'algèbre homologique
- Homotopy theory of diagrams
- DERIVED FUNCTORS OF INVERSE LIMITS REVISITED
- Some aspects of non-noetherian local cohomology
- On Stable Noetherian Rings
- INJECTIVE CLASSES OF MODULES
- Higher Topos Theory (AM-170)
- Des catégories abéliennes
- Rings and modules of quotients
This page was built for publication: On the exactness of products in the localization of (Ab.\(4^{\ast}\)) Grothendieck categories