Cut locus of a left invariant Riemannian metric on \(\mathrm{SO}_3\) in the axisymmetric case
DOI10.1016/j.geomphys.2016.09.005zbMath1352.53044arXiv1504.05472OpenAlexW1562689769WikidataQ115353026 ScholiaQ115353026MaRDI QIDQ335855
A. V. Podobryaev, Yuri L. Sachkov
Publication date: 2 November 2016
Published in: Journal of Geometry and Physics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1504.05472
Differential geometry of homogeneous manifolds (53C30) Existence theories for optimal control problems involving ordinary differential equations (49J15) Geodesics in global differential geometry (53C22) Global Riemannian geometry, including pinching (53C20) Sub-Riemannian geometry (53C17)
Related Items (10)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Sub-Riemannian structures on 3D Lie groups
- Maxwell strata in the Euler elastic problem
- Cut loci of Berger's spheres
- Control theory from the geometric viewpoint.
- The conjugate locus for the Euler top I. The axisymmetric case
- Complete description of the Maxwell strata in the generalized Dido problem
- Invariant Carnot–Caratheodory Metrics on $S^3$, $SO(3)$, $SL(2)$, and Lens Spaces
This page was built for publication: Cut locus of a left invariant Riemannian metric on \(\mathrm{SO}_3\) in the axisymmetric case