Sharp asymptotic estimates for a class of Littlewood–Paley operators
From MaRDI portal
Publication:3381904
DOI10.4064/sm200514-6-10zbMath1473.42023arXiv2004.11319OpenAlexW3134971983MaRDI QIDQ3381904
Publication date: 20 September 2021
Published in: Studia Mathematica (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2004.11319
Maximal functions, Littlewood-Paley theory (42B25) Multipliers in one variable harmonic analysis (42A45)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Sharp weighted bounds involving \(A_\infty\)
- Extrapolation of weights revisited: new proofs and sharp bounds
- Endpoint multiplier theorems of Marcinkiewicz type
- Some weighted norm inequalities concerning the Schrödinger operators
- A note on Littlewood-Paley decompositions with arbitrary intervals
- A Littlewood-Paley inequality for arbitrary intervals
- Littlewood-Paley decompositions and Fourier multipliers with singularities on certain sets
- Quantitative weighted estimates for the Littlewood-Paley square function and Marcinkiewicz multipliers
- Intuitive dyadic calculus: the basics
- A new type of Littlewood-Paley partition
- Quantitative weighted estimates for Rubio de Francia's Littlewood-Paley square function
- The Ap-Ainfty inequality for general Calderon-Zygmund operators
- Properties of Littlewood-Paley sets
- On Permutations of Lacunary Intervals
- Endpoint mapping properties of the Littlewood–Paley square function
- Sur les multiplicateurs des séries de Fourier
- A converse extrapolation theorem for translation-invariant operators
This page was built for publication: Sharp asymptotic estimates for a class of Littlewood–Paley operators