Discrete-Mindlin finite element for nonlinear geometrical analysis of shell structures
From MaRDI portal
Publication:338295
DOI10.1007/s40314-015-0279-3zbMath1348.74326OpenAlexW2229356690MaRDI QIDQ338295
Fodil Hammadi, Kamel Meftah, Lakhdar Sedira, Rezak Ayad, Mabrouk Hecini
Publication date: 4 November 2016
Published in: Computational and Applied Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s40314-015-0279-3
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Advanced simulation of models defined in plate geometries: 3D solutions with 2D computational complexity
- Lagrangian description and incremental formulation in the nonlinear theory of thin shells
- Geometrically nonlinear analysis of shell structures using a flat triangular shell finite element
- Resultant-stress degenerated-shell element
- 'Best' transverse shearing and stretching shell theory for nonlinear finite element simulations
- Geometrical nonlinear analysis of shells
- A hybrid stress nine-node degenerate shell element for geometric nonlinear analysis
- Shear and membrane locking in curved \(C^ 0\) elements
- Semigroups of Transformations Commuting with Injective Nilpotents
- A total lagrangian formulation for the geometrically nonlinear analysis of structures using finite elements. Part I. Two-dimensional problems: Shell and plate structures
- A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation
- Advances of thin shell finite elements and some applications—version I
- Degenerated isoparametric finite elements using explicit integration
- A formulation of general shell elements—the use of mixed interpolation of tensorial components
- A new nine node degenerated shell element with enhanced membrane and shear interpolation
- Assumed strain stabilization procedure for the 9‐node Lagrange shell element
- Linear and nonlinear stability analysis of cylindrical shells
- A geometric and material nonlinear plate and shell element
- Shell theory versus degeneration—a comparison in large rotation finite element analysis
- Analyse non linéaire de coques minces élastoplastiques avec l’élément DKT12
- Exact stability model of space frames
- Fundamental considerations for the finite element analysis of shell structures
- Higher‐order MITC general shell elements
- Geometrically nonlinear formulation for the curved shell elements
- A new discrete Kirchhoff‐Mindlin element based on Mindlin–Reissner plate theory and assumed shear strain fields—part II: An extended DKQ element for thick‐plate bending analysis
- Formulation et évaluation d’un modèle d’élément fini discret au sens de Mindlin pour l’analyse des structures isotropes
- Reduced integration technique in general analysis of plates and shells
This page was built for publication: Discrete-Mindlin finite element for nonlinear geometrical analysis of shell structures