THE -MODULAR LOCAL LANGLANDS CORRESPONDENCE AND LOCAL CONSTANTS
From MaRDI portal
Publication:3383320
DOI10.1017/S1474748019000586zbMath1490.22011arXiv1805.05888OpenAlexW2982929211WikidataQ126864568 ScholiaQ126864568MaRDI QIDQ3383320
Robert Kurinczuk, Nadir Matringe
Publication date: 23 September 2021
Published in: Journal of the Institute of Mathematics of Jussieu (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1805.05888
Representations of Lie and linear algebraic groups over local fields (22E50) Representation-theoretic methods; automorphic representations over local and global fields (11F70)
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Rankin-Selberg local factors modulo \(\ell \)
- Induced \(R\)-representations of \(p\)-adic reductive groups
- On the semisimplicity of tensor products of representations of groups
- Cohomology of sheaves on the building and \(R\)-representations
- \(l\)-modular representations of a \(p\)-adic reductive group with \(l\neq p\)
- Smooth representations modulo \(\ell\) of \(\mathrm{GL}_m(D)\)
- On the modified mod \(p\) local Langlands correspondence for \(\mathrm{GL}_2(\mathbb{Q}_{\ell})\)
- Lefschetz operator and local Langlands modulo \(\ell\): the limit case
- Modular Local Langlands Correspondence for GLn
- The local Langlands correspondence for $GL_n$ in families
- Formes Modulaires et Representations De GL(2)
- Les Constantes des Equations Fonctionnelles des Fonctions L
- L’involution de Zelevinski modulo ℓ
- Induced representations of reductive ${\germ p}$-adic groups. II. On irreducible representations of ${\rm GL}(n)$
- Induced representations of reductive ${\germ p}$-adic groups. I
- La conjecture de Langlands locale pour GL(n,F) modulo quand ≠p, >n
- Dualite Dans Le Groupe De Grothendieck De La Categorie Des Representations Lisses De Longueur Finie D'un Groupe Reductif p-Adique
- Congruences modulo \(l\) between \(\varepsilon\) factors for cuspidal representations of \(\mathrm{GL}(2)\)
- Semisimple Langlands correspondence for \(\operatorname {GL}(n,F)\bmod \ell\neq p\)
This page was built for publication: THE -MODULAR LOCAL LANGLANDS CORRESPONDENCE AND LOCAL CONSTANTS