Nonparametric Bayesian inference for multidimensional compound Poisson processes
From MaRDI portal
Publication:340753
DOI10.15559/15-VMSTA20zbMath1349.62115arXiv1412.7739MaRDI QIDQ340753
Peter Spreij, Shota Gugushvili, Frank H. van der Meulen
Publication date: 15 November 2016
Published in: Modern Stochastics. Theory and Applications (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1412.7739
posterior contraction ratedecompoundingmultidimensional compound Poisson processnonparametric Bayesian estimation
Processes with independent increments; Lévy processes (60G51) Inference from spatial processes (62M30) Density estimation (62G07) Asymptotic properties of nonparametric inference (62G20) Nonparametric estimation (62G05) Bayesian inference (62F15)
Related Items
Nonparametric Bayesian volatility estimation for gamma-driven stochastic differential equations ⋮ A non-parametric Bayesian approach to decompounding from high frequency data ⋮ Efficient nonparametric inference for discretely observed compound Poisson processes ⋮ An inverse problem for infinitely divisible moving average random fields ⋮ Adaptive procedure for Fourier estimators: application to deconvolution and decompounding ⋮ Bernstein-von Mises theorems for statistical inverse problems. II: Compound Poisson processes
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Nonparametric inference on Lévy measures and copulas
- Estimation for Lévy processes from high frequency data within a long time interval
- Nonparametric estimation for Lévy processes from low-frequency observations
- On a class of Bayesian nonparametric estimates: I. Density estimates
- Statistical inference for spatial Poisson processes
- Decompounding: an estimation problem for Poisson random sums.
- Posterior concentration rates for counting processes with Aalen multiplicative intensities
- Convergence rates of posterior distributions.
- Convergence rates for density estimation with Bernstein polynomials.
- Nonparametric adaptive estimation for pure jump Lévy processes
- Density estimation for compound Poisson processes from discrete data
- Nonparametric density estimation in compound Poisson processes using convolution power estimators
- A kernel type nonparametric density estimator for decompounding
- A Bayesian analysis of some nonparametric problems
- Decompounding Poisson random sums: recursively truncated estimates in the discrete case
- A User's Guide to Measure Theoretic Probability
- Adaptive Bayesian multivariate density estimation with Dirichlet mixtures