D-chtoucas de Drinfeld à modifications symétriques et identité de changement de base
From MaRDI portal
Publication:3413465
DOI10.1016/j.ansens.2005.12.005zbMath1147.22012arXivmath/0312181OpenAlexW2798481403MaRDI QIDQ3413465
Publication date: 7 December 2006
Published in: Annales Scientifiques de l’École Normale Supérieure (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/math/0312181
Representations of Lie and linear algebraic groups over local fields (22E50) Representation-theoretic methods; automorphic representations over local and global fields (11F70)
Related Items (4)
On degenerations of \({\mathcal D}\)-shtukas ⋮ Chtoucas pour les groupes réductifs et paramétrisation de Langlands globale ⋮ Nearby cycles of parahoric shtukas, and a fundamental lemma for base change ⋮ Comptage des -chtoucas: la partie elliptique
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- The fundamental lemma for stable base change
- Fonctions élémentaires et lemme fondamental pour le changement de base stable. (Elementary functions and fundamental lemma for stable base change)
- Varieties of modules of \(F\)-sheaves
- Two remarks on irreducible characters of finite general linear groups
- \({\mathcal D}\)-elliptic sheaves and the Langlands correspondence
- Perverse sheaves on affine Grassmannians and Langlands duality
- Drinfeld shtukas and Langlands correspondence.
- Moduli spaces of principal \(F\)-bundles
- Faisceaux pervers, homomorphisme de changement de base et lemme fondamental de jacquet et ye
- Simple Algebras, Base Change, and the Advanced Theory of the Trace Formula. (AM-120)
- Points on Some Shimura Varieties Over Finite Fields
- Local models in the ramified case. I: The EL-case
- The Distributions in the Invariant Trace Formula Are Supported on Characters
- Prolongement de faisceaux analytiques cohérents
- Construction of central elements in the affine Hecke algebra via nearby cycles
This page was built for publication: D-chtoucas de Drinfeld à modifications symétriques et identité de changement de base