Shifted convolution sums of Fourier coefficients with divisor functions
From MaRDI portal
Publication:343213
DOI10.1007/s10474-015-0499-4zbMath1363.11067OpenAlexW1900689589MaRDI QIDQ343213
Publication date: 25 November 2016
Published in: Acta Mathematica Hungarica (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s10474-015-0499-4
Fourier coefficients of automorphic forms (11F30) Langlands (L)-functions; one variable Dirichlet series and functional equations (11F66) Holomorphic modular forms of integral weight (11F11)
Related Items (6)
Fourth power moment of coefficients of automorphic \(L\)-functions for \(\mathrm{GL}(m)\) ⋮ Some density results on sets of primes for Hecke eigenvalues ⋮ On the local maxima behaviour of Hecke eigenvalues and its applications ⋮ A note on the cancellations of sums involving Hecke eigenvalues ⋮ The Bombieri–Vinogradov Theorem on Higher Rank Groups and its Applications ⋮ The generalized Bourgain-Sarnak-Ziegler criterion and its application to additively twisted sums on \(\mathrm{GL}_m\)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A family of Calabi-Yau varieties and potential automorphy. II.
- Das asymptotische Verhalten von Summen über multiplikative Funktionen
- The subconvexity problem for Rankin-Selberg \(L\)-functions and equidistribution of Heegner points. II
- The spectral decomposition of shifted convolution sums
- A sieve method for shifted convolution sums
- Bounds for automorphic \(L\)-functions
- Problems similar to the additive divisor problem
- A quadratic divisor problem
- An additive problem in the Fourier coefficients of cusp forms
- The subconvexity problem for Rankin-Selberg \(L\)-functions and equidistribution of Heegner points
- Rankin-Selberg \(L\)-functions in the level aspect.
- SUMS OF FOURIER COEFFICIENTS OF CUSP FORMS
- Mass equidistribution for Hecke eigenforms
- Level Aspect Subconvexity For Rankin-Selberg $L$-functions
- Das asymptotische Verhalten von Summen über multiplikative Funktionen. II
- Multiplikative Funktionen auf schnell wachsenden Folgen.
- Estimates for Rankin-Selberg \(L\)-functions and quantum unique ergodicity
- The additive divisor problem and its analogs for Fourier coefficients of cusp forms. I
This page was built for publication: Shifted convolution sums of Fourier coefficients with divisor functions