Mathematical Research Data Initiative
Main page
Recent changes
Random page
Help about MediaWiki
Create a new Item
Create a new Property
Create a new EntitySchema
Merge two items
In other projects
Discussion
View source
View history
Purge
English
Log in

On the endomorphism rings of abelian groups and their Jacobson radical

From MaRDI portal
Publication:343285
Jump to:navigation, search

DOI10.1007/s10998-015-0093-0zbMath1363.16090arXiv1407.1362OpenAlexW1595917267MaRDI QIDQ343285

Victor A. Bovdi, Mihail I. Ursul, Alexander N. Grishkov

Publication date: 25 November 2016

Published in: Periodica Mathematica Hungarica (Search for Journal in Brave)

Full work available at URL: https://arxiv.org/abs/1407.1362

zbMATH Keywords

Bohr topologyJacobson radicalfinite topologyfunctorial topologyadmissible topologyendomorphism ringLiebert topologyquasi-injective moduleshift homomorphismtopological ring


Mathematics Subject Classification ID

Endomorphism rings; matrix rings (16S50) Nil and nilpotent radicals, sets, ideals, associative rings (16N40) Topological and ordered rings and modules (16W80)




Cites Work

  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • The maximal totally bounded group topology on G and the biggest minimal G-space, for Abelian groups G
  • On the Jacobson radical of the endomorphism ring of a homogeneous separable group.
  • Quasi-injective modules and their endomorphism rings
  • Topologies for function spaces
  • Topological Rings of Endomorphisms
  • On a problem of Bertram Yood
  • Ideals in Topological Rings
  • Incomplete normed algebras
  • Topological Rings
  • Locally Compact Rings. II.
Retrieved from "https://portal.mardi4nfdi.de/w/index.php?title=Publication:343285&oldid=12217324"
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information
MaRDI portal item
This page was last edited on 30 January 2024, at 03:39.
Privacy policy
About MaRDI portal
Disclaimers
Imprint
Powered by MediaWiki