The clamped plate in Gauss space
From MaRDI portal
Publication:343500
DOI10.1007/s10231-016-0550-2zbMath1377.35205OpenAlexW2256662588MaRDI QIDQ343500
Jeffrey J. Langford, Laura Mercredi Chasman
Publication date: 28 November 2016
Published in: Annali di Matematica Pura ed Applicata. Serie Quarta (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s10231-016-0550-2
Boundary value problems for higher-order elliptic equations (35J40) Plates (74K20) Estimates of eigenvalues in context of PDEs (35P15)
Related Items
Lord Rayleigh's conjecture for vibrating clamped plates in positively curved spaces ⋮ Fundamental tones of clamped plates in nonpositively curved spaces
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Isoperimetric inequalities for the first Neumann eigenvalue in Gauss space
- Isoperimetric estimates for the first eigenfunction of a class of linear elliptic problems
- Rearrangements and convexity of level sets in PDE
- Éléments extrémaux pour les inégalités de Brunn-Minkowski gaussiennes (Extreme elements for the Gaussian Brunn-Minkowski inequalities)
- General logarithmic Sobolev inequalities and Orlicz imbeddings
- On the first eigenvalue of the clamped plate
- The Brunn-Minkowski inequality in Gauss space
- A comparison result related to Gauss measure
- Rayleigh's conjecture on the principal frequency of the clamped plate
- On Rayleigh's conjecture for the clamped plate and its generalization to three dimensions
- A sharp lower bound for some Neumann eigenvalues of the Hermite operator
- An optimal Poincaré-Wirtinger inequality in Gauss space
- A second eigenvalue bound for the Dirichlet Schrödinger operator
- Remarks on strongly elliptic partial differential equations
- Hypercontractive Semigroups and Sobolev's Inequality
- Logarithmic Sobolev Inequalities
- Regularity results for degenerate elliptic equations related to Gauss measure
- Continuous dependence of eigenvalues on the domain
- On Membranes and Plates