A Mean-of-Order-$$p$$ Class of Value-at-Risk Estimators
From MaRDI portal
Publication:3459685
DOI10.1007/978-3-319-18029-8_23zbMath1329.62229OpenAlexW1226328117MaRDI QIDQ3459685
M. Ivette Gomes, M. Fátima Brilhante, Dinis Pestana
Publication date: 11 January 2016
Published in: Springer Proceedings in Mathematics & Statistics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/978-3-319-18029-8_23
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A simple generalisation of the Hill estimator
- Semi-parametric second-order reduced-bias high quantile estimation
- Semi-parametric estimation for heavy tailed distributions
- Bias reduction in risk modelling: semi-parametric quantile estimation
- Adaptive estimation of heavy right tails: resampling-based methods in action
- Kernel estimators for the second order parameter in extreme value statistics
- Estimating catastrophic quantile levels for heavy-tailed distributions
- Statistics of extremes for IID data and breakthroughs in the estimation of the extreme value index: Laurens de Haan leading contributions
- Adaptive estimates of parameters of regular variation
- A simple general approach to inference about the tail of a distribution
- The bootstrap methodology in statistics of extremes -- choice of optimal sample fraction
- ``Asymptotically unbiased estimators of the tail index based on external estimation of the second order parameter
- A new class of semi-parametric estimators of the second order parameter.
- On the estimation of high quantiles
- Sur la distribution limite du terme maximum d'une série aléatoire
- Tail index and second-order parameters’ semi-parametric estimation based on the log-excesses
- Estimation of Parameters and Larger Quantiles Based on the k Largest Observations
- Comparison of tail index estimators
- On optimising the estimation of high quantiles of a probability distribution
- Generalized Jackknife-Based Estimators for Univariate Extreme-Value Modeling
- A Semi-parametric Estimator of a Shape Second-Order Parameter
- A Sturdy Reduced-Bias Extreme Quantile (VaR) Estimator
This page was built for publication: A Mean-of-Order-$$p$$ Class of Value-at-Risk Estimators