Invariant metrizability and projective metrizability on Lie groups and homogeneous spaces
DOI10.1007/S00009-016-0762-0zbMath1356.53021arXiv1509.04414OpenAlexW3099641547WikidataQ115390360 ScholiaQ115390360MaRDI QIDQ346935
Tamás Milkovszki, Zoltán Muzsnay, Ioan Bucataru
Publication date: 30 November 2016
Published in: Mediterranean Journal of Mathematics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1509.04414
geodesicsLie grouphomogeneous spaceEuler-Lagrange equationgeodesic orbit structuremetrizability and projective metrizability
Differential geometry of homogeneous manifolds (53C30) Other variational principles in mechanics (70H30) Inverse problems for systems of particles (70F17) Local differential geometry of Finsler spaces and generalizations (areal metrics) (53B40) Linear and affine connections (53B05) Lagrange's equations (70H03)
Related Items (2)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Geodesically equivalent metrics in general relativity
- Variational connections on Lie groups
- On the Finsler-metrizabilities of spray manifolds
- Hilbert forms for a Finsler metrizable projective class of sprays
- Metrisability of two-dimensional projective structures
- Invariant Shen connections and geodesic orbit spaces
- Sur la géométrie différentielle des groupes de Lie de dimension infinite et ses applications à l'hydrodynamique des fluides parfaits
- Inverse problem of the calculus of variations on Lie groups
- FINSLER METRIZABLE ISOTROPIC SPRAYS AND HILBERT’S FOURTH PROBLEM
- PROJECTIVE AND FINSLER METRIZABILITY: PARAMETERIZATION-RIGIDITY OF THE GEODESICS
- An invariant variational principle for canonical flows on Lie groups
- The inverse problem for invariant Lagrangians on a Lie group
- Bi-invariant and noninvariant metrics on Lie groups
- The inverse problem of the calculus of variations for ordinary differential equations
- Invariant Finsler metrics on homogeneous manifolds
This page was built for publication: Invariant metrizability and projective metrizability on Lie groups and homogeneous spaces