An a priori estimate for Douglas problem in Riemannian manifolds
From MaRDI portal
Publication:3471229
DOI10.1007/BF02107550zbMath0695.58008WikidataQ115392756 ScholiaQ115392756MaRDI QIDQ3471229
Publication date: 1989
Published in: Acta Mathematica Sinica (Search for Journal in Brave)
Abstract critical point theory (Morse theory, Lyusternik-Shnirel'man theory, etc.) in infinite-dimensional spaces (58E05) Variational methods for elliptic systems (35J50) Riemannian, Finsler and other geometric structures on infinite-dimensional manifolds (58B20) Global Riemannian geometry, including pinching (53C20) Variational problems concerning minimal surfaces (problems in two independent variables) (58E12)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- The index theorem for \(k\)-fold connected minimal surfaces
- Eine globalanalytische Behandlung des Douglas'schen Problems. (A global analysis treatment of the Douglas problem)
- The existence of minimal immersions of 2-spheres
- Complete minimal surfaces in Euclidean \(n\)-spaces
- Boundary behavior of minimal surfaces
- On a critical point theory for minimal surfaces spanning a wire in Rn.
- A Morse theory for annulus-type minimal surfaces.
- A Report on Harmonic Maps
- Morse Theory by Perturbation Methods with Applications to Harmonic Maps
- Minimal surfaces in Riemannian manifolds