Beyond first-order finite element schemes in micromagnetics
DOI10.1016/j.jcp.2013.08.035zbMath1349.78068OpenAlexW1978913015MaRDI QIDQ348340
A. Vaysset, L. D. Buda-Prejbeanu, Jean-Christophe Toussaint, Evaggelos Kritsikis, François Alouges
Publication date: 5 December 2016
Published in: Journal of Computational Physics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jcp.2013.08.035
finite elementsLandau-Lifshitz equationspintronicsmagnetization dynamicsmagnetostatic fieldmicromagnetismnon-uniform fast Fourier transformspin-torque oscillator
Finite element, Galerkin and related methods applied to problems in optics and electromagnetic theory (78M10) Composite media; random media in optics and electromagnetic theory (78A48) Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs (65M60) Numerical methods for discrete and fast Fourier transforms (65T50) Electro- and magnetostatics (78A30) Statistical mechanics of magnetic materials (82D40)
Related Items
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- A kernel-independent adaptive fast multipole algorithm in two and three dimensions
- A new finite element scheme for Landau-Lifschitz equations
- Using NFFT 3---A Software Library for Various Nonequispaced Fast Fourier Transforms
- On global weak solutions for Landau-Lifshitz equations: Existence and nonuniqueness
- A New Algorithm For Computing Liquid Crystal Stable Configurations: The Harmonic Mapping Case
- On Landau-Lifshitz’ equations for ferromagnetism
- CONVERGENCE OF A FINITE ELEMENT DISCRETIZATION FOR THE LANDAU–LIFSHITZ EQUATIONS IN MICROMAGNETISM
- Stability and Convergence of Finite-Element Approximation Schemes for Harmonic Maps
- A fast algorithm for particle simulations