Stevin numbers and reality
From MaRDI portal
Publication:351454
DOI10.1007/s10699-011-9228-9zbMath1275.01016arXiv1107.3688OpenAlexW3100184890WikidataQ56112471 ScholiaQ56112471MaRDI QIDQ351454
Mikhail G. Katz, Karin Usadi Katz
Publication date: 11 July 2013
Published in: Foundations of Science (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1107.3688
Related Items
Toward a history of mathematics focused on procedures ⋮ Gregory's sixth operation ⋮ Tools, objects, and chimeras: Connes on the role of hyperreals in mathematics ⋮ A Cauchy-Dirac delta function ⋮ Ten misconceptions from the history of analysis and their debunking ⋮ Quelques conceptions de la théorie des proportions dans des traités de la seconde moitié du dix septième siècle ⋮ Periodic words connected with the tribonacci-Lucas numbers ⋮ Leibniz's infinitesimals: their fictionality, their modern implementations, and their foes from Berkeley to Russell and beyond ⋮ Survey article: The real numbers -- a survey of constructions ⋮ An integer construction of infinitesimals: toward a theory of eudoxus hyperreals ⋮ Proofs and retributions, or: why Sarah can't take limits ⋮ Controversies in the foundations of analysis: comments on Schubring's \textit{Conflicts}
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Numbers and models, standard and nonstandard
- Intermolecular forces of infinite range and the Boltzmann equation
- The rise of non-Archimedean mathematics and the roots of a misconception. I: The emergence of non-Archimedean systems of magnitudes
- Perceiving the infinite and the infinitesimal world: unveiling and optical diagrams in mathematics
- Implicit differentiation with microscopes
- Infinitely small quantities in Cauchy's textbooks
- Peirce's place in mathematics
- Definite values of infinite sums: Aspects of the foundations of infinitesimal analysis around 1820
- A Burgessian critique of nominalistic tendencies in contemporary mathematics and its historiography
- A new look at e.g. Björling and the Cauchy sum theorem
- Conflicts between generalization, rigor and intuition. Number concepts underlying the development of analysis in 17th--19th century France and Germany
- Renaissance notions of number and magnitude
- Comments on the Paper "Two Letters by N. N. Luzin to M. Ya. Vygodskii"
- The Burgess-Rosen critique of nominalistic reconstructions
- The wake of Berkeley's analyst: Rigor mathematicae?
- On Cauchy's Notion of Infinitesimal
- Hermann Grassmann and the Creation of Linear Algebra
- Looking at graphs through infinitesimal microscopes, windows and telescopes
- Early delta functions and the use of infinitesimals in research
- Dedekind's Theorem: √2 × √3 = √6
- C. S. Peirce's Philosophy of Infinite Sets
- Über die Nicht-charakterisierbarkeit der Zahlenreihe mittels endlich oder abzählbar unendlich vieler Aussagen mit ausschliesslich Zahlenvariablen
- Cauchy's Continuum
- Nonstandard Analysis
- Infinitesimals
- Cauchy et Bolzano
- The Invention of the Decimal Fractions and the Application of the Exponential Calculus by Immanuel Bonfils of Tarascon (c. 1350)
- Rings of Real-Valued Continuous Functions. I
- Non-standard analysis