A non-type (D) operator in \(c_0\)
From MaRDI portal
Publication:353163
DOI10.1007/s10107-013-0661-0zbMath1286.47035arXiv1103.2349OpenAlexW2593473069WikidataQ57917795 ScholiaQ57917795MaRDI QIDQ353163
Orestes Bueno, Benar Fux Svaiter
Publication date: 12 July 2013
Published in: Mathematical Programming. Series A. Series B (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1103.2349
Nonsmooth analysis (49J52) Monotone operators and generalizations (47H05) Set-valued operators (47H04)
Related Items (3)
A stand-alone analysis of quasidensity ⋮ The sum of a maximally monotone linear relation and the subdifferential of a proper lower semicontinuous convex function is maximally monotone ⋮ Construction of pathological maximally monotone operators on non-reflexive Banach spaces
Cites Work
- Fifty years of maximal monotonicity
- Maximal monotonicity of dense type, local maximal monotonicity, and monotonicity of the conjugate are all the same for continuous linear operators
- Some properties of maximal monotone operators on nonreflexive Banach spaces
- The range of a monotone operator
- Linear monotone subspaces of locally convex spaces
- Opérateurs monotones non linéaires dans les espaces de Banach non réflexifs. (Nonlinear monotone operators on nonreflexive Banach spaces)
- On Gossez type (D) maximal monotone operators
- A maximal monotone operator of type (D) which maximal monotone extension to the bidual is not of type (D)
- On a Convexity Property of the Range of a Maximal Monotone Operator
- On the Extensions to the Bidual of a Maximal Monotone Operator
- On the Range of a Coercive Maximal Monotone Operator in a Nonreflexive Banach Space
This page was built for publication: A non-type (D) operator in \(c_0\)