When weak Hopf algebras are Frobenius
From MaRDI portal
Publication:3550557
DOI10.1090/S0002-9939-09-10121-1zbMath1204.16023arXiv0810.4777OpenAlexW2040903375MaRDI QIDQ3550557
Lars Kadison, Miodrag Cristian Iovanov
Publication date: 31 March 2010
Published in: Proceedings of the American Mathematical Society (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/0810.4777
Lua error in Module:PublicationMSCList at line 37: attempt to index local 'msc_result' (a nil value).
Related Items (7)
Pairing and duality of algebraic quantum groupoids ⋮ Hopf modules, Frobenius functors and (one-sided) Hopf algebras ⋮ A Larson-Sweedler theorem for Hopf \(\mathcal{V} \)-categories ⋮ Frobenius Monoidal Algebras and Related Topics ⋮ Subring depth, Frobenius extensions, and towers. ⋮ A proof of the Brown-Goodearl conjecture for module-finite weak Hopf algebras ⋮ Antipodes, preantipodes and Frobenius functors
Cites Work
- Reconstruction of weak quasi Hopf algebras
- Integrals for (dual) quasi-Hopf algebras. Applications
- Larson-Sweedler theorem and the role of grouplike elements in weak Hopf algebras.
- On the structure of weak Hopf algebras
- Weak Hopf algebras. I: Integral theory and \(C^*\)-structure
- On fusion categories.
- A coassociative \(C^*\)-quantum group with nonintegral dimensions
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: When weak Hopf algebras are Frobenius