TURING PATTERNS IN GENERAL REACTION-DIFFUSION SYSTEMS OF BRUSSELATOR TYPE
From MaRDI portal
Publication:3589648
DOI10.1142/S0219199710003968zbMath1198.35276OpenAlexW2105337422MaRDI QIDQ3589648
Marius Ghergu, Vicenţiu D. Rădulescu
Publication date: 20 September 2010
Published in: Communications in Contemporary Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1142/s0219199710003968
Stability in context of PDEs (35B35) Classical flows, reactions, etc. in chemistry (92E20) PDEs in connection with biology, chemistry and other natural sciences (35Q92) Degree theory for nonlinear operators (47H11) Developmental biology, pattern formation (92C15) Implicit function theorems; global Newton methods on manifolds (58C15)
Related Items
Structure preserving numerical analysis of reaction-diffusion models, Analysis on a generalized Sel'kov-Schnakenberg reaction-diffusion system, Bifurcation and stability analysis of steady states to a Brusselator model, Minimal wave speed in a dispersal predator-prey system with delays, Blow-up and delay for a parabolic-elliptic Keller-Segel system with a source term, Qualitative analysis of a strongly coupled predator-prey system with modified Holling-Tanner functional response, Well-posedness of a ratio-dependent Lotka-Volterra system with feedback control, Super-critical and sub-critical bifurcations in a reaction-diffusion Schnakenberg model with linear cross-diffusion, Local and global bifurcation of steady states to a general Brusselator model, Spatiotemporal pattern formation of a diffusive bimolecular model with autocatalysis and saturation law, Bifurcation analysis of a diffusive plant-wrack model with tide effect on the wrack, Cross-diffusion-driven Turing instability and weakly nonlinear analysis of Turing patterns in a uni-directional consumer-resource system, Turing-Hopf bifurcation analysis and normal form of a diffusive Brusselator model with gene expression time delay, New conditions for pattern solutions of a Brusselator model, Bifurcation behaviors of steady-state solution to a discrete general Brusselator model, Hopf bifurcations in general systems of Brusselator type, Turing instability and Hopf bifurcation of a spatially discretized diffusive Brusselator model with zero-flux boundary conditions, Global existence and large time behavior of solutions of a time fractional reaction diffusion system, Turing patterns for a coupled two-cell generalized Schnakenberg model, Non-existence of stationary pattern of a chemotaxis model with logistic growth, Pattern formation of a biomass-water reaction-diffusion model, The effect of delayed feedback on the dynamics of an autocatalysis reaction–diffusion system, Bifurcation analysis of a single species reaction-diffusion model with nonlocal delay, A highly accurate time-space pseudospectral approximation and stability analysis of two dimensional Brusselator model for chemical systems, Density-dependent effects on Turing patterns and steady state bifurcation in a Beddington-DeAngelis-type predator-prey model
Cites Work
- Dynamics of local map of a discrete Brusselator model: Eventually trapping regions and strange attractors
- Diffusion vs cross-diffusion: An elliptic approach
- A second-order scheme for the ``Brusselator reaction-diffusion system
- Diffusion, self-diffusion and cross-diffusion
- Global dynamics of the Brusselator equations
- Mesa-type patterns in the one-dimensional Brusselator and their stability
- Pattern formation in the Brusselator system
- Brussellator Isolas
- On stationary patterns of a reaction–diffusion model with autocatalysis and saturation law
- Non-constant steady-state solutions for Brusselator type systems
- Weakly invariant regions for reaction—diffusion systems and applications
- The chemical basis of morphogenesis
- Global bifurcation in the Brusselator system
- Normal form for Hopf bifurcation of partial differential equations on the square