The Euler-Poincaré-Hopf theorem for flat connections in some transitive Lie algebroids
From MaRDI portal
Publication:3599873
DOI10.1007/s10587-006-0023-7zbMath1164.57304OpenAlexW2083500968MaRDI QIDQ3599873
Publication date: 9 February 2009
Published in: Czechoslovak Mathematical Journal (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/31034
Sphere bundles and vector bundles in algebraic topology (55R25) Characteristic classes and numbers in differential topology (57R20) Algebraic topology on manifolds and differential topology (57R19)
Related Items
Cites Work
- Lie algebroids and Poisson-Nijenhuis structures
- Poincaré duality for transitive unimodular invariantly oriented Lie algebroids
- Algebroids -- general differential calculi on vector bundles
- Exact Gerstenhaber algebras and Lie bialgebroids
- Sur l'espace de prolongement différentiable
- The Lie bialgebroid of a Poisson-Nijenhuis manifold
- Complex Analytic Connections in Fibre Bundles
- Étude des feuilletages transversalement complets et applications
- The BV-algebra of a Jacobi manifold
- Lie Algebroids and Lie Pseudoalgebras
- Bott’s vanishing theorem for regular Lie algebroids
- Transverse measures, the modular class and a cohomology pairing for Lie algebroids
- Lie Equations, Vol. I
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item