ON HERMITIAN PFISTER FORMS
From MaRDI portal
Publication:3602717
DOI10.1142/S021949880800303XzbMath1178.11036OpenAlexW2055691215MaRDI QIDQ3602717
Emmanuel Lequeu, Nicolas Grenier-Boley, Mohammad Gholamzadeh Mahmoudi
Publication date: 12 February 2009
Published in: Journal of Algebra and Its Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1142/s021949880800303x
Algebraic theory of quadratic forms; Witt groups and rings (11E81) Bilinear and Hermitian forms (11E39)
Related Items (1)
Cites Work
- Unnamed Item
- A proof of the Pfister factor conjecture
- Sums of Hermitian squares
- Spaces of similarities. III: Function fields
- A local-global principle for algebras with involution and Hermitian forms.
- Pfister involutions.
- The discriminant of a decomposable symplectic involution.
- Quadratic forms and the u-invariant. I
- Formes antihermitiennes devenant hyperboliques sur un corps de déploiement
- CLIFFORD ALGEBRA PERIODICITY FOR CENTRAL SIMPLE ALGEBRAS WITH AN INVOLUTION
- Niveau hermitien de Certaines algèbres de quaternions
- EXACT SEQUENCES OF WITT GROUPS
- NIVEAU HERMITIEN D'UNE ALGÈBRE DE QUATERNIONS À DIVISION MUNIE D'UNE INVOLUTION DE DEUXIÈME ESPÈCE
- Hermitian analogue of a theorem of Springer
This page was built for publication: ON HERMITIAN PFISTER FORMS