Toeplitz and Hankel operators and Dixmier traces on the unit ball of $\mathbb C^n$
DOI10.1090/S0002-9939-09-09331-9zbMath1181.47024arXiv0707.2025OpenAlexW1603897433MaRDI QIDQ3642651
Kunyu Guo, Genkai Zhang, Miroslav Engliš
Publication date: 6 November 2009
Published in: Proceedings of the American Mathematical Society (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/0707.2025
Bergman spacetraceToeplitz operatorsFock spaceHankel operatorsDixmier tracepseudo-differential operatorsSchatten-von Neumann classesboundary CR operatorsinvariant Banach spacesMacaev classespseudo-Toeplitz operators
Riesz operators; eigenvalue distributions; approximation numbers, (s)-numbers, Kolmogorov numbers, entropy numbers, etc. of operators (47B06) Toeplitz operators, Hankel operators, Wiener-Hopf operators (47B35) Bergman spaces of functions in several complex variables (32A36)
Related Items (12)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Hankel forms and the Fock space
- The action functional in non-commutative geometry
- Quantum mechanics and partial differential equations
- On the \(S_ 4\)-norm of a Hankel form
- Traces of commutators of integral operators
- Schatten-norm identities for Hankel operators
- Non-commutative residues for anisotropic pseudo-differential operators in \(\mathbb R^n\)
- Toeplitz operators in \(n\)-dimensions
- Schatten Class Hankel Operators on the Bergman Space of the Unit Ball
- Hankel Operators on Weighted Bergman Spaces
- Membership of Hankel Operators on the Ball in Unitary Ideals
- Noncommutative residue invariants for CR and contact manifolds
This page was built for publication: Toeplitz and Hankel operators and Dixmier traces on the unit ball of $\mathbb C^n$