Properties of the nonsymmetric Robinson-Schensted-Knuth algorithm
From MaRDI portal
Publication:364709
DOI10.1007/s10801-012-0404-yzbMath1271.05100OpenAlexW2098877061MaRDI QIDQ364709
James Haglund, Sarah K. Mason, Jeffery B. Remmel
Publication date: 9 September 2013
Published in: Journal of Algebraic Combinatorics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s10801-012-0404-y
permutationssymmetric functionsDemazure atomsnonsymmetric Macdonald polynomialspermuted basement fillings
Symmetric functions and generalizations (05E05) Combinatorial aspects of representation theory (05E10)
Related Items
The projective cover of tableau-cyclic indecomposable 𝐻_{𝑛}(0)-modules, Permuted composition tableaux, 0-Hecke algebra and labeled binary trees, A major-index preserving map on fillings, An improved multi-objective framework for the rich arc routing problem, Modules of the 0-Hecke algebra arising from standard permuted composition tableaux, Unnamed Item, An explicit construction of type A Demazure atoms, Indecomposable 0-Hecke modules for extended Schur functions
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Quasisymmetric Schur functions
- An explicit construction of type A Demazure atoms
- Symmetric and nonsymmetric Macdonald polynomials
- A decomposition of Schur functions and an analogue of the Robinson-Schensted-Knuth algorithm
- Refinements of the Littlewood-Richardson rule
- A combinatorial formula for nonsymmetric Macdonald polynomials