Non-parametric applications of an infinite dimensional convolution theorem
DOI10.1007/BF00535344zbMath0571.62031MaRDI QIDQ3687512
Publication date: 1985
Published in: Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete (Search for Journal in Brave)
efficient estimationstatistical functionalsspectral functionsempirical distributionquantile functionsminimum distance functionalsHajék-Le Cam convolution theoreminfinite dimensional convolution theoremM functionalsshift experiments in abstract Wiener spaces
Asymptotic properties of nonparametric inference (62G20) Nonparametric estimation (62G05) Limit theorems for vector-valued random variables (infinite-dimensional case) (60B12)
Related Items (12)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- The minimum distance method of testing
- Estimated sampling distributions: The bootstrap and competitors
- Estimating a distribution function
- Central limit theorems for empirical measures
- Séminaire sur les fonctions aléatoires linéaires et les mesures cylindriques
- Approximation Theorems of Mathematical Statistics
- A General Approach to the Optimality of Minimum Distance Estimators
- Efficient robust estimates in parametric models
- Robust estimation via minimum distance methods
- On the Efficiency of a Class of Non-Parametric Estimates
- Asymptotic minimax theorems for the sample distribution function
- Asymptotic inference in stationary Gaussian time-series
- WILLIAM F. FRIEDMAN'S TRANSCRIPTION OF THE VOYNICH MANUSCRIPT
- Sufficiency and Approximate Sufficiency
- On Estimation of the Spectral Function of a Stationary Gaussian Process
- A characterization of limiting distributions of regular estimates
- Convergence of Quantile and Spacings Processes with Applications
- Contiguity of Probability Measures
- Equivalent Comparisons of Experiments
This page was built for publication: Non-parametric applications of an infinite dimensional convolution theorem