Mathematical Research Data Initiative
Main page
Recent changes
Random page
Help about MediaWiki
Create a new Item
Create a new Property
Create a new EntitySchema
Merge two items
In other projects
Discussion
View source
View history
Purge
English
Log in

The spectral structure of the electronic black box Hamiltonian

From MaRDI portal
Publication:372943
Jump to:navigation, search

DOI10.1007/s11005-013-0634-5zbMath1296.47005arXiv1208.2420OpenAlexW2043750048MaRDI QIDQ372943

Matthias Westrich, Vojkan Jakšić, Philip D. Grech

Publication date: 21 October 2013

Published in: Letters in Mathematical Physics (Search for Journal in Brave)

Full work available at URL: https://arxiv.org/abs/1208.2420


zbMATH Keywords

finite rank perturbationselectronic black box modelsingular continuous spectrum


Mathematics Subject Classification ID

Applications of operator theory in the physical sciences (47N50) Hermitian and normal operators (spectral measures, functional calculus, etc.) (47B15) Local spectral properties of linear operators (47A11)


Related Items

Landauer-Büttiker formula and Schrödinger conjecture ⋮ Landauer-Büttiker and Thouless conductance



Cites Work

  • Transient and recurrent spectrum
  • Quantum electrodynamics of confined nonrelativistic particles
  • Transport properties of quasi-free fermions
  • Independent electron model for open quantum systems: Landauer-Büttiker formula and strict positivity of the entropy production
  • Singular continuous spectrum under rank one perturbations and localization for random hamiltonians
  • Topics in Non-Equilibrium Quantum Statistical Mechanics
  • Spectral theory of Pauli-Fierz operators.
  • Unnamed Item
  • Unnamed Item
Retrieved from "https://portal.mardi4nfdi.de/w/index.php?title=Publication:372943&oldid=12247634"
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information
MaRDI portal item
This page was last edited on 30 January 2024, at 04:05.
Privacy policy
About MaRDI portal
Disclaimers
Imprint
Powered by MediaWiki