Copules archimédiennes et families de lois bidimensionnelles dont les marges sont données
DOI10.2307/3314660zbMath0605.62049OpenAlexW2072258798MaRDI QIDQ3742508
R. Jock MacKay, Christian Genest
Publication date: 1986
Published in: Canadian Journal of Statistics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.2307/3314660
Fréchet boundsfixed marginalsArchimedean distribution functionsindependence distributionnew one-parameter families of bivariate distributionspointwise limits of sequences of Archimedean copulas
Characterization and structure theory for multivariate probability distributions; copulas (62H05) Monotonic functions, generalizations (26A48)
Related Items (only showing first 100 items - show all)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On the simultaneous associativity of F(x,y) and x+y-F(x,y)
- On nonparametric measures of dependence for random variables
- A probabilistic interpretation of complete monotonicity
- A generalisation of Gumbel's bivariate logistic distribution
- A class of bivariate distributions including the bivariate logistic
- Note on the multivariate Burr's distribution
- Partial orderings of permutations and monotonicity of a rank correlation statistic
- Ordinal Measures of Association
- Bivariate Exponential Distributions
- The performance of some correlation coefficients for a general bivariate distribution
- Multivariate Pareto Distributions
- One-parameter families of bivariate distributions with fixed marginals
- Uniform representations of bivariate distributions
- Correlation structure in Farlie-Gumbel-Morgenstern distributions
- Some Concepts of Dependence
This page was built for publication: Copules archimédiennes et families de lois bidimensionnelles dont les marges sont données