Monodromy and Picard-Fuchs equations for families of $K3$-surfaces and elliptic curves
DOI10.24033/asens.1519zbMath0612.14006OpenAlexW2598870250MaRDI QIDQ3752493
Publication date: 1986
Published in: Annales scientifiques de l'École normale supérieure (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=ASENS_1986_4_19_4_583_0
Picard-Fuchs equationsK3 surfacesGauss- Manin connection1-dimensional families of abelian surfacesmonodromy representation of the variations of Hodge structure
Structure of families (Picard-Lefschetz, monodromy, etc.) (14D05) Arithmetic ground fields for abelian varieties (14K15) Connections (general theory) (53C05) Special surfaces (14J25)
Related Items (8)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On the Picard-Fuchs equation and the formal Brauer group of certain elliptic \(K3\)-surfaces
- Automorphisms of Enriques surfaces
- Variation of Hodge structure: The singularities of the period mapping
- On K3 surfaces with large Picard number
- Compactification of arithmetic quotients of bounded symmetric domains
- On elliptic modular surfaces
- Equations différentielles à points singuliers réguliers
- Über die wesentlichen Singularitäten analytischer Mengen
- A family of K3 surfaces and ζ(3).
This page was built for publication: Monodromy and Picard-Fuchs equations for families of $K3$-surfaces and elliptic curves