Finite non-elementary Abelian \(p\)-groups whose number of subgroups is maximal.
From MaRDI portal
Publication:375690
DOI10.1007/S11856-012-0114-0zbMath1285.20017OpenAlexW2015378627MaRDI QIDQ375690
Publication date: 31 October 2013
Published in: Israel Journal of Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s11856-012-0114-0
Arithmetic and combinatorial problems involving abstract finite groups (20D60) Series and lattices of subgroups (20D30) Finite nilpotent groups, (p)-groups (20D15)
Related Items (9)
Lower Bounds on the Number of Cyclic Subgroups in Finite Non-Cyclic Nilpotent Groups ⋮ On a conjecture by Haipeng Qu ⋮ Finite \(p\)-groups with few non-major \(k\)-maximal subgroups ⋮ Finite non-cyclic nilpotent group whose number of subgroups is minimal ⋮ A note on an “Anzahl” theorem of P. Hall ⋮ THE SECOND MINIMUM/MAXIMUM VALUE OF THE NUMBER OF CYCLIC SUBGROUPS OF FINITE -GROUPS ⋮ Finite 2-groups whose number of subgroups of each order are at most \(2^4\) ⋮ Finite non-cyclic \(p\)-groups whose number of subgroups is minimal ⋮ A connection between the number of subgroups and the order of a finite group
Uses Software
Cites Work
- Unnamed Item
- Groups of prime power order. Vol. 1.
- The Magma algebra system. I: The user language
- Das ``schiefe Produkt in der Gruppentheorie mit Anwendung auf die endlichen nichtkommutativen Gruppen mit lauter kommutativen echten Untergruppen und die Ordnungszahlen, zu denen nur kommutative Gruppen gehören
- A MILLENNIUM PROJECT: CONSTRUCTING SMALL GROUPS
This page was built for publication: Finite non-elementary Abelian \(p\)-groups whose number of subgroups is maximal.