Mathematical Research Data Initiative
Main page
Recent changes
Random page
Help about MediaWiki
Create a new Item
Create a new Property
Create a new EntitySchema
Merge two items
In other projects
Discussion
View source
View history
Purge
English
Log in

Uniqueness Theorems for Subharmonic Functions in Unbounded Domains

From MaRDI portal
Publication:3759127
Jump to:navigation, search

DOI10.2307/2046342zbMath0622.31003OpenAlexW4243712078MaRDI QIDQ3759127

Stephen J. Gardiner

Publication date: 1987

Full work available at URL: https://doi.org/10.2307/2046342


zbMATH Keywords

Martin boundaryharmonic measuresubharmonicGreen domainpositive harmonichypoharmonic functionsh- resolutivityh-harmonic measure


Mathematics Subject Classification ID

Harmonic, subharmonic, superharmonic functions in higher dimensions (31B05) Martin boundary theory (31C35)




Cites Work

  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Sur le rôle de la frontière de R. S. Martin dans la théorie du potentiel
  • Boundary behavior of harmonic functions in non-tangentially accessible domains
  • On topologies and boundaries in potential theory. Enlarged ed. of a course of lectures delivered in 1966
  • A Phragmén-Lindelöf Theorem for Subharmonic Functions
  • Harmonic majorization of subharmonic functions in unbounded domains
  • A Strong Type of Regularity for the PWB Solution of the Dirichlet Problem
  • On Half-Spherical Means of Subharmonic Functions in Half-Spaces
  • The Martin Boundary of RN ×0,1[]
  • Positive Harmonic Majorization of Subharmonic Functions in Strips
  • Subharmonic functions in strips


This page was built for publication: Uniqueness Theorems for Subharmonic Functions in Unbounded Domains

Retrieved from "https://portal.mardi4nfdi.de/w/index.php?title=Publication:3759127&oldid=17296590"
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information
MaRDI portal item
This page was last edited on 5 February 2024, at 11:50.
Privacy policy
About MaRDI portal
Disclaimers
Imprint
Powered by MediaWiki