Asymptotic Distribution of Eigenvalues for Schrödinger Operators with Magnetic Fields
From MaRDI portal
Publication:3760979
DOI10.1017/S002776300000074XzbMath0623.35048MaRDI QIDQ3760979
Publication date: 1987
Published in: Nagoya Mathematical Journal (Search for Journal in Brave)
Schrödinger operatorvector potentialmagnetic fieldsasymptotic distribution of eigenvaluescompact resolventhigh-energy and semi-classical asymptotics
Asymptotic distributions of eigenvalues in context of PDEs (35P20) Schrödinger operator, Schrödinger equation (35J10)
Related Items
Discreteness of Spectrum and Strict Positivity Criteria for Magnetic Schrödinger Operators ⋮ Probability and Quantum Symmetries. II. The Theorem of Nœther in quantum mechanics ⋮ Semiclassical asymptotics of eigenvalue distributions for schrödinger operators with magnetic fields ⋮ Spectral properties of Schrödinger operators with irregular magnetic potentials, for a \(\text{spin }\frac{1}{2}\) particle ⋮ Beyond the classical Weyl and Colin de Verdière's formulas for Schrödinger operators with polynomial magnetic and electric fields ⋮ Dia- and paramagnetism for nonhomogeneous magnetic fields ⋮ Classical and non-classical eigenvalue asymptotics for magnetic Schrödinger operators ⋮ WEYL ASYMPTOTICS FOR MAGNETIC SCHRÖDINGER OPERATORS AND DE GENNES' BOUNDARY CONDITION ⋮ Sharp trace asymptotics for a class of \(2D\)-magnetic operators
Cites Work
- On the eigenvalues of a class of hypoelliptic operators. IV
- Nonclassical eigenvalue asymptotics
- Un exemple de champ magnetique dans \(R^{\nu}\)
- Asymptotic behavior of the spectrum of differential equations
- Schrödinger operators with magnetic fields. I: General interactions
- Hypoelliptic second order differential equations
- ASYMPTOTICS OF THE EIGENVALUES OF THE SCHRÖDINGER OPERATOR
- Fonction spectrale et valeurs propres d'une classe d'operateurs non elliptiques