Mathematical Research Data Initiative
Main page
Recent changes
Random page
Help about MediaWiki
Create a new Item
Create a new Property
Create a new EntitySchema
Merge two items
In other projects
Discussion
View source
View history
Purge
English
Log in

Non-uniqueness of Beltrami-Schaefer stress functions

From MaRDI portal
Publication:377709
Jump to:navigation, search

DOI10.1007/s10659-012-9422-1zbMath1344.74019OpenAlexW2123816607MaRDI QIDQ377709

Yuan Wang, Jonny Rutqvist

Publication date: 7 November 2013

Published in: Journal of Elasticity (Search for Journal in Brave)

Full work available at URL: https://doi.org/10.1007/s10659-012-9422-1

zbMATH Keywords

general solution


Mathematics Subject Classification ID

Classical linear elasticity (74B05) Multiplicity of solutions of equilibrium problems in solid mechanics (74G35)


Related Items

Hilbert complexes of nonlinear elasticity, Operator matrix and non-uniqueness of Beltrami-Schaefer stress functions



Cites Work

  • Unnamed Item
  • A Stokes theorem for second-order tensor fields and its implications in continuum mechanics
  • The completeness of Maxwell's stress function representation
  • Thin hyperelastic sheets of compressible material: Field equations, Airy stress function and an application in fracture mechanics
  • Stress functions for continua with couple stresses
  • Plane-strain problems for a class of gradient elasticity models -- a stress function approach
  • On the completeness of the Beltrami stress functions in continuum mechanics
  • A generalization of the Beltrami stress functions in continuum mechanics
  • Die Spannungsfunktionen des dreidimensionalen Kontinuums und des elastischen Körpers
Retrieved from "https://portal.mardi4nfdi.de/w/index.php?title=Publication:377709&oldid=12248559"
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information
MaRDI portal item
This page was last edited on 30 January 2024, at 04:06.
Privacy policy
About MaRDI portal
Disclaimers
Imprint
Powered by MediaWiki