A note on the diophantine equation \((a^n-1)(b^n-1)= x^2\)
From MaRDI portal
Publication:377815
DOI10.1007/s10998-012-6964-8zbMath1274.11089OpenAlexW968777848MaRDI QIDQ377815
Publication date: 7 November 2013
Published in: Periodica Mathematica Hungarica (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s10998-012-6964-8
Related Items (4)
On the exponential Diophantine equation \((a^n-2)(b^n-2)=x^2\) ⋮ On the exponential Diophantine equation \((a^n-1)(b^n-1)=x^2\) ⋮ A note on the exponential Diophantine equation \((a^n-1)(b^n-1)=X^2\) ⋮ On the Diophantine equation $(2^x-1)(p^y-1)=2z^2$
Cites Work
- The product of like-indexed terms in binary recurrences
- The Diophantine equation \((a^n-1)(b^n-1)=x^2\)
- Ternary Diophantine Equations via Galois Representations and Modular Forms
- The Diophantine equation xn= Dy2+1
- Note on J. H. E. Cohn's paper ``The Diophantine equation xn=Dy2+1"
- On the Diophantine Equation mX 2 - nY 2 = ± 1
- On the Diophantine equations \((2^n-1)(6^n-1)=x^2\) and \((a^n-1)(a^{kn}-1)=x^2\)
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: A note on the diophantine equation \((a^n-1)(b^n-1)= x^2\)